Class 1 Lab

Bioinformatics Databases and Key Online Resources

Barry J. Grant

Marcos Díaz-Gay

3/21/23

i Instructions

Save this document to your computer and open it in a PDF viewer such as Preview (available on every mac) or Adobe Acrobat Reader (free for PC and Linux). Be sure to add your name and UC San Diego personal identification number (PID) and email below before answering all questions in the space provided.

Student Name

UCSD PID

UCSD Email

Overview

The purpose of this lab session is to introduce a range of bioinformatics databases and associated services available online whilst investigating the molecular basis of a common human disease.

Sections 1 and 2 deal with querying and searching GenBank, GENE and OMIM databases at **NCBI**. Sections 3 and 4 provide exposure to **EBI** resources for comparing proteins and visualizing protein structures. Finally, section 5 provides an opportunity to explore these and other databases further with additional examples.

Side-note: The Web is a dynamic environment, where information is constantly added and removed. Servers "go down", links change without warning, etc. This can lead to "broken" links and results not being returned from services. Don't give up - give it a second go and try a search engine using terms related to the page you are trying to access.

Section 1

The following transcript was found to be abundant in a human patient's blood sample.

>example1

The only information you are given is the above sequence so you must begin your investigation with a sequence search - for this example we will use NCBI's **BLAST** service at: http://blast.ncbi.nlm.nih.gov/

Side-note: There are several different "basic BLAST" programs available at NCBI (including nucleotide BLAST (**BLASTn**), protein BLAST (**BLASTp**), and translated nucleotide nucleotide (**BLASTx**). We will explore using all of these in the coming sections.

Q1 Which BLAST program should we use in this case?

Tip
What type of sequence are you provided with?

Searching against the "Nucleotide collection" (NR database) that includes GenBank is a good place to start your investigation of this sequence.

Q2 What are the names and accession numbers of the top four hits from your BLAST search?

Q3. What are the percent identities, coverage and E-values for these top few hits?

? Tip

These three metrics (E-value, coverage and identities) are the most important for us to consider at this stage. I suggest you have a discussion with your neighbor and Marcos to make sure you have a firm grasp of these concepts as you will need them later in your project.

To investigate these results further click on the Alignments section (tab) of your BLAST result page (Figure 1). This will give you more details on matched nucleotides and important links to "Related information" about a given "subject sequence".

Side-note: In BLAST termonology we talk about query sequence and subject sequence. The query being the input sequence you searched with and the subject being the identified hit sequence from the database.

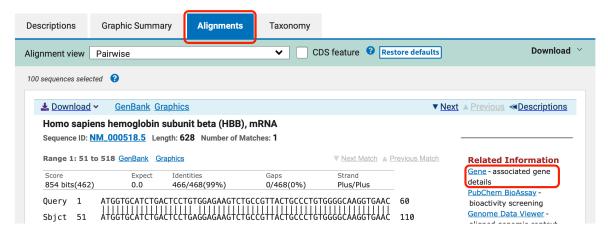
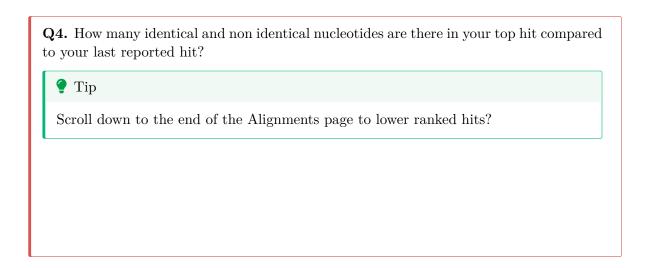



Figure 1: The BLAST Alignemnts tab contains more detailed information about your results

From the results of your BLAST search you can link to the **GENE** entry for one of your top hits. This link is located under the "Related Information" heading at the right hand side of each displayed alignment on the "Alignments" tab (Figure 1).

Q5. What is the "Official Symbol" and "Official Full Name" for this gene?

Q6.	What chromosome is this gene located on?
	at there is a rather basic schematic diagram of neighboring genes and their orientation Genomic context" section that you can use for answering the next question (Figure 2).
clicked featured	BB gene is in maroon. All other gene arrows can be hovered over for full names and on to link to that specific GENE page to find out more. We will explore more full genome browsers at ENSEMBE and UCSC in an upcoming lab but basically it is the lea here in a more simplified form.
Q7.	What are the names of neighboring genes on this chromosome?
Q8.	How many exons and introns are annotated for this gene?
•	

Location: 11p15.4

Exon count: 3

Annotation release	Status	Assembly	Chr	Location
<u>110</u>	current	GRCh38.p14 (GCF_000001405.40)	11	NC_000011.10 (52254645227071, complement)
<u>110</u>	current	T2T-CHM13v2.0 (GCF_009914755.1)	11	NC_060935.1 (52848325286439, complement)
105.20220307	previous assembly	GRCh37.p13 (GCF_000001405.25)	11	NC_000011.9 (52466945248301, complement)

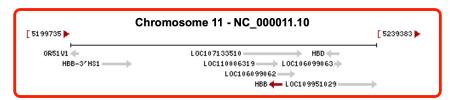


Figure 2: NCBI GENEs Genomic context section indicating location, structure and neighboring genes

Q9 What is the function of the encoded protein?

🕊 Tip

In addition to reading the abstract like text on a given GENE entry I encourage you to explore the linked "Gene Ontology" information and discuss with your neighbor and Marcos the advantages you think such controlled terms might have over free text?

Q10. Does the protein have a role in human disease(s)? If so what diseases?

Scroll down to the "Phenotypes" section of the GENE entry page and also explore the link to the \mathbf{OMIM} database

Section 2

By now you should be aware that there are a number of human diseases linked to particular variants of the beta-globing gene. In this case our example sequence corresponds to human sickle cell beta-globin mRNA with this disease resulting from a point mutation in the beta globin gene. In the following section, you will compare sickle cell and normal beta globin sequences to reveal the nature of the sickle cell mutation at the protein level.

To do this you need to find at least one sequence representing the normal beta globin gene. Open a new window and visit the NCBI home page (http://www.ncbi.nlm.nih.gov) and select "Nucleotide" from the drop menu associated with the top search box. Then enter the search term: **HBB** (Figure 3).

Figure 3: The main Google like search tool for searching accross all NCBI databases is called **Entrez**. Note that productive use often requires the use of addational "filters" as we will explore later.

Note that lots of often irrelevant results are returned so lets apply some "Filters" (available by clicking in the left-hand sidebar) to focus on **RefSeq** entries (under "Source databases") for **Homo sapiens** (under "Results by taxon" on the right-hand sidebar in this later case).

Side-note: Boolean operators (NOT, AND, OR) as well as fielded queries (i.e. "HBB[Gene Name] AND Human[Organism]") can be used directly in ENTREZ searches to filter results for more efficient searching.

Remember that we are after \underline{mRNA} so we can compare to the mRNA sequence from section 1 above.

Q11. What is the ACCESSION number of the "Homo sapiens hemoglobin, beta (HBB), mRNA" entry?

Select "Homo sapiens hemoglobin, beta (HBB), mRNA" from the results and scroll down to the "FEATURES" section to answer the following. You can also find some of this same information from selecting the "GRAPHICS" display format and, for example, placing your mouse over the first exon (see Figure 4).

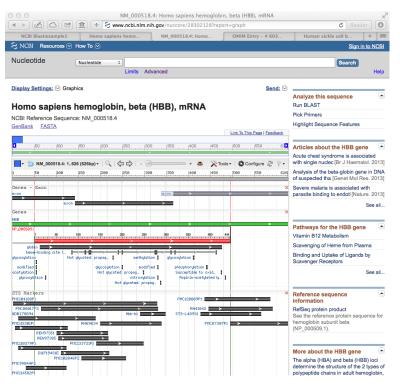


Figure 4: The GRAPHICS view of a GenBank entry can be more user friendly than the traditional text of the coresponding GenBank format display.

Q12. What are the numbers of the first and last base positions of exon 1 of this entry?

Q13. What are the numbers of the first and last base positions of the CDS?

Tip

CDS or "coding sequence" refers to the portion of a genomic DNA sequence that is translated, from the start codon to the stop codon. Successful translation of a CDS results in the synthesis of a protein.

Section 3

Here we will compare the retrieved sequences by creating a sequence alignment. This will make the difference between the two sequences easy to spot.

To generate the alignment, we will use **MUSCLE** available on the EBI website at: http://www.ebi.ac.uk/Tools/msa/muscle/

Select the FASTA display for the "Homo sapiens hemoglobin, beta (HBB), mRNA" (NM_000518) entry from section 2.

Now copy-and-paste this FASTA format sequence and also the **example1** sequence from section 1 into the input box of the **MUSCLE** page. Then click the submit button (see red circle in Figure 5).

Side-note: If your alignment is incomplete, please wait until the page refreshes. If the job appears to be in an undefined state try clicking refresh until a result is returned.

The two sequences should now be aligned. Where the aligned sequences are identical, an * is placed under the alignment. Examine the results and note that your sequences are nearly identical. However, being much shorter, the sickle cell sequence has many padding gap characters (—) to bring equivalent regions into the correct register (Figure 6).

When inspecting alignments (especially those with lots of sequences) it can be helpful to use a graphical user interface (or GUI) to display colored, interactive and scrollable versions of your alignment. One such GUI is the **seaview** program.

From your muscle results web page click **Download Alignment File** (red highlight in Figure 6). Note that if a download does not automatically begin then you may need to save the resulting plain text page from your web browser via **File** > **Save As...**

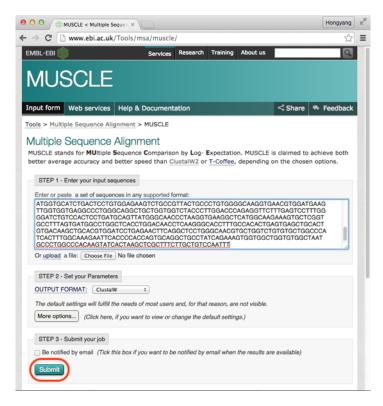


Figure 5: To use the EBI MUSCLE server you must paste multiple FASTA format sequences that include their ID lines.

Figure 6: Alignment of patient and reference HBB sequence

Next download seaview for your computer from: http://doua.prabi.fr/software/seaview

Once downloaded open seaview by double clicking on it's icon (most likely in your Downloads folder) and then select **File** > **Open** > and select your muscle alignment results. A colored version of your alignment should now be displayed (Figure 7).

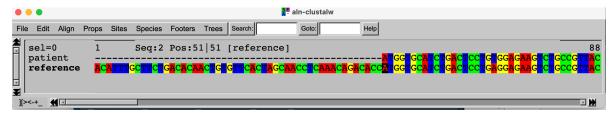


Figure 7: Programs like SEAVIEW are most useful when you have large many sequence alignments

See if you can now use seaview to answer the following 3 questions:

Q14. How many gap characters (-) are added to the beginning of the sickle cell betaglobin sequence in order to align it with the beta globin sequence? How might you have guessed this number from information you read in the GenBank annotation? **?** Tip See section 2, Q13.

Q15. Ignoring ambiguity codes (Y and N), what are the differences between the two sequences?

There may be more than one

Q16. Which codon position from the start of the sickle cell sequence would this difference affect? What amino acid would the different codons encode in the two sequences?

? Tip

Use the codon table below to help (Figure 8).

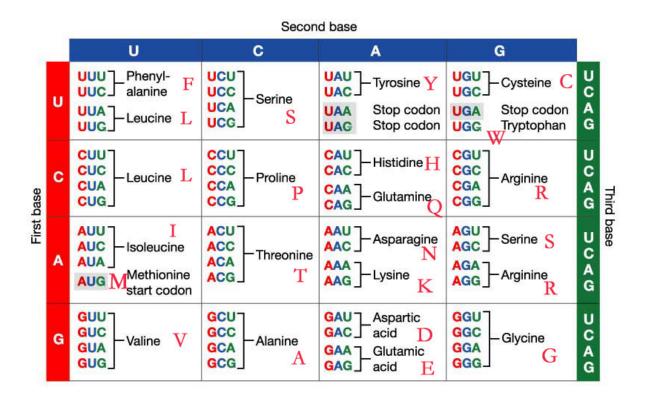


Figure 8: Codon table for use in Q16

Section 4

In this section we will retrieve and visualize the 3D protein structure of sickle cell haemoglobin. The aim here is to ascertain how the Glu6 -> Val6 mutation might cause the mutant molecules to oligomerise into fibers, hence deforming erythrocytes. This will require you to examine the structural context of the mutation in the beta globin chains.

We could find sickle cell haemoglobin structures via a text search of main PDB website @

http://www.rcsb.org/. However, as we know the nucleotide sequence from our previous work, lets use BLASTx to search the PDB database from the NCBI site.

To do this visit http://blast.ncbi.nlm.nih.gov/ select the appropriate BLAST program and make sure the database you are searching against is set to "Protein Data Bank (pdb)".

Note the accession numbers and alignment statistics for the top few hits.

Q17. Are there any PDB structures with 100% identity to your example 1 query sequence? Give the PDB codes for these entries.

Note that this might not be the top listed hit

To further examine these structures we will jump over to the main PDB database as it has more annotation data and more full featured 3D molecular viewers than NCBI.

Visit http://www.rcsb.org/ and use the 4 character PDB accession code you found previously in your BLASTx search to pull up each PDB entry you listed in Q17.

From scrolling through this entry you can find out information about the "Experimental Data" (such as the resolution of the structure and quality of the data collected), "Literature" links (i.e. associated publications), "Macromolecules" (i.e. protein chains present) and "Small Molecules" (i.e. any ligands or co-factors that might be present).

From the "Macromolecules" section notice that the hemoglobin structure is composed of multiple alpha and beta globin molecules corresponding to gene names HBA and HBB.

Q18. Which four chain identifiers in the 1HBS structure represent beta globin?

At the top of the PDB entry page click the **3D View** tab to pull up an interactive 3D structure view (Figure 9).

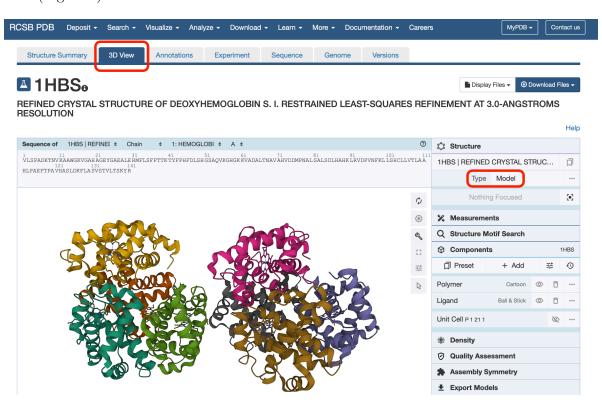


Figure 9: Using the molecular viewer at the PDB database

Under the "Structure" section of the right side control panel change the "Type" of view from "Assembly" to "Model" (see second red rectangle in Figure 9). This will now display the model observed in the asymmetric unit of the crystal (i.e. the packing of chains observed in the actual experiment) rather than the simplified default biological assembly view of the minimal functional form.

Side-note: This is the relatively new Mol* 3D viewer. This viewer also features

at a number of other major databases including UniProt. The user interface is still somewhat clunky and limited when compared to stand-alone software like PyMol, Chimera or VMD. However, these sand-alone viewes require consideral download and installion time so we will stick with Mol* for this lab. Essentially there are 3 major components to the viewer (Figure 10):

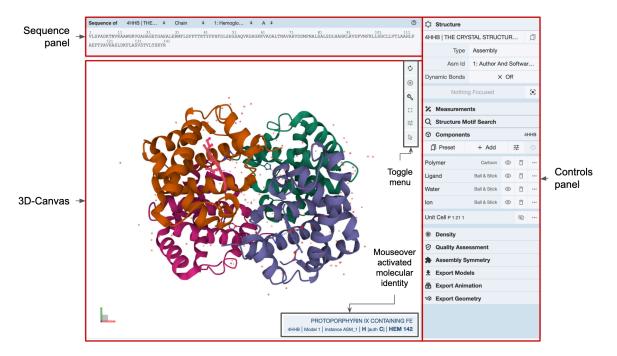


Figure 10: The three major components of the Mol* viewer include the Sequence panel, 3D-canvas and Control panel.

Notice by rotating the molecule in the 3D Canvas that there are now two hemoglobin molecules displayed rather than the previous single molecule. Notice that each is comprised of four distinctly colored chains with two alpha and two beta chains in each.

To highlight our beta globin amino acid of interest toggle the sequence display to the **beta chain** (Figure 11) and specifically chain **H** (Figure 12) in the top "Sequence panel".

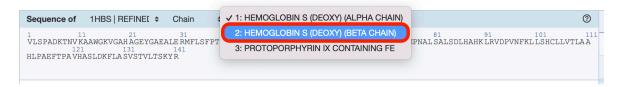


Figure 11: Display the sequence of beta globin chains in the PDB entry

Find and click on amino acid V 6 in the sequence view to highlight this amino acid in the 3D

Figure 12: Focus on beta globin chain H

view (Figure 13). Notice that the right side control panel now lists VAL 6 in several locations (purple highlight in Figure 13).

Try alternating the zoom level by clicking on these side panel entries (purple in Figure 13) to get a better feel for the location of our Valine amino acid in the overall structure.

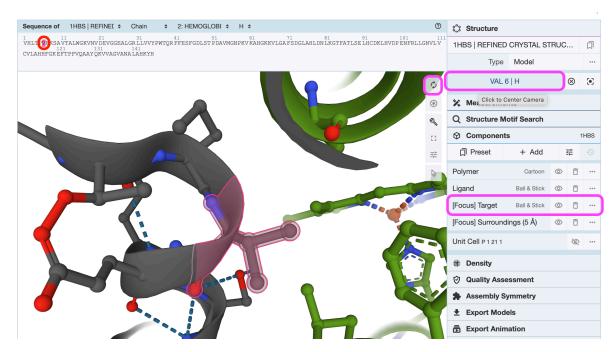


Figure 13: Highlighting Val 6 in the sequence and structure of 1HBS chain H

Using the "Control panel" we can add a new "Representation" to more clearly display the mutated Valine residue. First click on the 3 dots "action" menu icon beside the [Focus] Target component of the side panel. This should correspond to our Valine amino acid (Figure 14). Then click "Add Representation" and select spacefill from the dropdown list of options.

This will result in all atoms of our entry being displayed as so called "sapcefill spheres" with different atom types in different colors (e.g. oxygens in red, carbons in gray etc.)

Play around with the settings from the spacefill menu and others in this section until you have a reasonable feel for how the program works. Can you clearly see our mutated residue

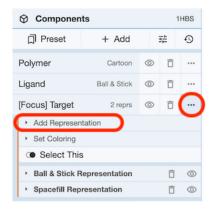


Figure 14: Adding a spacefill represention to our Val 6 residue

position?

Try zooming (via scrolling up and down) and rotating (via clicking and moving your mouse). You can always "reset" the view by clicking the reset like circular arows icon. Also experiment with different settings and views.

Q19. What do you notice about the location of the Val6 residue in chain H of the 1HBS structure in relation to porphyrin?

See Figure below where I have used a white "spacefill" representation for Val6 and changed the viewer background to black.

In general black backgrounds can help with interactive visualization but should not be used for publication quality figures. You can download a high resolution image with transparent background of your final representation using the iris like screenshot icon.

Side-note: Some folks have reported issues using the Mol* viewer with older versions of the Edge, IE and Chrome browsers. The workaround is to use a different web browser. If, the structure is still not displayed correctly for you, download its coordinates from the **PDB** database at: http://www.rcsb.org/ and ask for assistance.

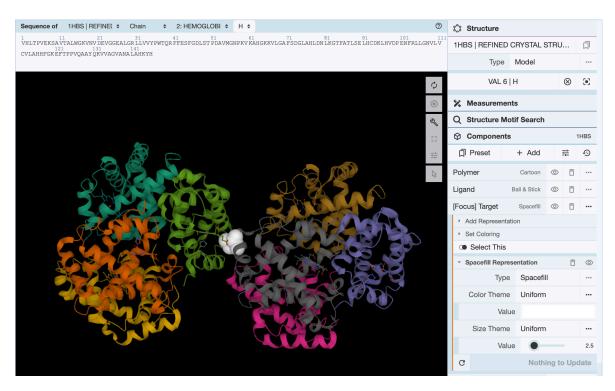


Figure 15: In this representation, the background has been changed to black and E6V (i.e. Val6) mutation is highlighted in white spacefill representation and the porphyrin prosthetic group in ball and stick representation).

Q20: What one part of this exercise or associated lecture material is still confusing? If appropriate please also indicate the question number from this document and answer the question in the following anonymous form: Mudy_Point_Assessment_Form Your comments will let us know which material needs to be further clarified and will help us gain stronger control of the material in this course. Thank you!

Discussion

The original paper discussing the 1HBS and 2HBS crystal structures is available online:

http://www.sciencedirect.com/science/article/pii/S0022283697912535

In this article, Figure 3 demonstrates how the Glu6->Val6 mutation could result in the characteristic "sickle" phenotype. The charged Glu6 mutating to Val6 creates a superficial hydrophobic patch on one HbS molecule that interacts with hydrophobic surface residues of another. The molecules thus polymerize, creating extended fibers that distort the shape of the red blood cell.

Assessment of the disparate biochemical properties of normal and sickle haemgolobin, together with microscopy studies showing long crystal fibres inside sickle cells, led Linus Pauling (1949) to (correctly) predict the morphological effects of these changes. The abnormal sickle form causes the cells to clump together, hampering their passage through blood vessels, depriving tissues of oxygen. See this YouTube video for an illustration: http://www.youtube.com/watch?v=Qd0HrY2NlwY

The sickled blood cells have a short lifetime and cannot be replaced fast enough, leading to chronic anaemia. Sickle cell anemia was one of the first diseases to be linked to a defect at the molecular level, providing a clear demonstration that a single base mutation can change a single amino acid, which in turn can result in a defective protein.

Bluebird Bio as well as Vertex Pharmaceuticals and CRISPR Therapeutics have ongoing sickle-cell gene therapy trials. As noted in this excellent recent easy in the New Yorker: "There is something of a paradox in the fact that patients with sickle-cell disease — a population that has faced extraordinary levels of bias, neglect, and marginalization - may be among the first to have their illnesses transformed by the most cutting-edge of medical technologies".

Appendix

>gi|179408|gb|M25079.1|HUMBETGLA Human sickle cell beta-globin mRNA
ATGGTNCAYYTNACNCCNGTGGAGAAGTCYGCYGTNACNGCNCT
NTGGGGYAAGGTNAAYGTGGATGAAGYYGGYGGYGAGGCCCTGG
GCAGNCTGCTNGTGGTCTACCCTTGGACCCAGAGGTTCTTNGAN
TCNTTYGGGGATCTGNNNACNCCNGANGCAGTTATGGGCAACCC
TAAGGTGAAGGCTCATGGCAAGAAAGTGCTCGGTGCCTTTAGTG
ATGGCCTGGCTCACCTGGACAACCTCAAGGGCACCTTTGCCACA
CTGAGTGAGCTGCACTGTGACAAGCTNCAYGTGGATCCTGAGAA
CTTCAGGCTNCTNGGCAACGTGYTNGTCTGYGTGCTGGCCCATC
ACTTTGGCAAAGAATTCACCCCACCAGTGCANGCNGCCTATCAG
AAAGTGGTNGCTGGTGTNGCTAATGCCCTGGCCCACAAGTATCA
CTAAGCTNGCYTTYTTGYTGTCCAATTT

>gi|28302128|ref|NM_000518.4| Homo sapiens hemoglobin, beta (HBB), mRNA ACATTTGCTTCTGACACACTGTGTTCACTAGCAACCTCAAACA GACACCATGGTGCATCTGACTCCTGAGGAGAAGTCTGCCGTTAC TGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGG CCCTGGGCAGGCTGCTGGTGTCTACCCTTGGACCCAGAGGTTC TTTGAGTCCTTTGGGGATCTGTCCACTCCTGATGCTGTTATGGG CAACCCTAAGGTGAAGGCTCATGGCAAGAAGTGCTCGGTGCCT TTAGTGATGGCCTGGCTCACCTGGACAACCTCAAGGGCACCTTT GCCACACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGATCC TGAGAACTTCAGGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGG CCCATCACTTTGGCAAAGAATTCACCCCACCAGTGCAGGCTGCC TATCAGAAAGTGGTGGCTGGTGTGGCTAATGCCCTGGCCCACAA GTATCACTAAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGG TTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTAT GAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTA TTTTCATTGC

http://www.rcsb.org/pdb/files/1hbs.pdb

The mutation causing sickle cell anemia is a single nucleotide substitution (A to T) in the codon for amino acid 6. The change converts a glutamic acid codon (GAG) to a valine codon (GTG). Changing a hydrophilic amino acid to a hydrophobic one, see http://themedicalbiochemistrypage.org/sicklecellanemia.php

Note there is also a T -> A difference at position 162 (162/3 => codon 54 GCT -> GCA). This is in the third position of the codon and hence does not change the corresponding amino-acid.